Techniques for high-performance digital frequency synthesis and phase control
نویسنده
چکیده
This thesis presents a 3.6-GHz, 500-kHz bandwidth digital AE frequency synthesizer architecture that leverages a recently invented noise-shaping time-to-digital converter (TDC) and an all-digital quantization noise cancellation technique to achieve excellent in-band and out-of-band phase noise, respectively. In addition, a passive digital-toanalog converter (DAC) structure is proposed as an efficient interface between the digital loop filter and a conventional hybrid voltage-controlled oscillator (VCO) to create a digitally-controlled oscillator (DCO). An asynchronous divider structure is presented which lowers the required TDC range and avoids the divide-value-dependent delay variation. The prototype is implemented in a 0.13-am CMOS process and its active area occupies 0.95 mm 2 . Operating under 1.5 V, the core parts, excluding the VCO output buffer, dissipate 26 mA. Measured phase noise at 3.67 GHz achieves -108 dBc/Hz and -150 dBc/Hz at 400 kHz and 20 MHz, respectively. Integrated phase noise at this carrier frequency yields 204 fs of jitter (measured from 1 kHz to 40 MHz). In addition, a 3.2-Gb/s delay-locked loop (DLL) in a 0.18-pm CMOS for chip-tochip communications is presented. By leveraging the fractional-N synthesizer technique, this architecture provides a digitally-controlled delay adjustment with a fine resolution and infinite range. The provided delay resolution is less sensitive to the process, voltage, and temperature variations than conventional techniques. A new AE modulator enables a compact and low-power implementation of this architecture. A simple bang-bang detector is used for phase detection. The prototype operates at a 1.8-V supply voltage with a current consumption of 55 mA. The phase resolution and differential rms clock jitter are 1.4 degrees and 3.6 ps, respectively. Thesis Supervisor: Michael H. Perrott, Ph.D. Title: Associate Professor of Electrical Engineering
منابع مشابه
Design and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)
Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...
متن کاملDigital Binary Phase-shift Keyed Signal Detector
We have developed the effective algorithm for detecting digital binary phase-shift keyed signals. This algorithm requires a small number of arithmetic operations over the signal period. It can be relatively easy implemented based on the modern programmable logic devices. It also provides high interference immunity by identifying signal presence when signal-to-noise ratio is much less that its w...
متن کاملAn Efficient Hierarchical Modulation based Orthogonal Frequency Division Multiplexing Transmission Scheme for Digital Video Broadcasting
Due to the increase of users the efficient usage of spectrum plays an important role in digital terrestrial television networks. In digital video broadcasting, local and global content are transmitted by single frequency network and multifrequency network respectively. Multifrequency network support transmission of global content and it consumes large spectrum. Similarly local content are well ...
متن کاملDesign and Implementation of Field Programmable Gate Array Based Baseband Processor for Passive Radio Frequency Identification Tag (TECHNICAL NOTE)
In this paper, an Ultra High Frequency (UHF) base band processor for a passive tag is presented. It proposes a Radio Frequency Identification (RFID) tag digital base band architecture which is compatible with the EPC C C2/ISO18000-6B protocol. Several design approaches such as clock gating technique, clock strobe design and clock management are used. In order to reduce the area Decimal Matrix C...
متن کاملHybrid Sine Function Generation for Low Power Direct Digital Frequency Synthesis
High-resolution low-power Direct Digital Frequency Synthesizers (DDFS) with small chip area are investigated. Lookup tables for sine and cosine yield the leading bits of the amplitudes. A CORDIC interpolation scheme enhances the amplitude precision. Systematic case studies using VHDL – models and synthesis indicate, that optimum LUT/CORDIC ratios can minimize use of power and silicon area. Intr...
متن کاملPerformance Analysis Of Mono-bit Digital Instantaneous Frequency Measurement (Difm) Device
Instantaneous Frequency Measurement (IFM) devices are the essential parts of anyESM, ELINT, and RWR receiver. Analog IFMs have been used for several decades. However, thesedevices are bulky, complex and expensive. Nowadays, there is a great interest in developing a wideband, high dynamic range, and accurate Digital IFMs. One Digital IFM that has suitably reached allthese requirements is mono-bi...
متن کامل